SUGGESTED SOLUTION TO HOMEWORK 1

JUNHAO ZHANG

Problem 1. Let X and Y be two normed space. Show that a linear operator is bounded if and only if it maps bounded sets in X into bounded subsets of Y.

Proof. \Leftarrow :Let T be a linear operator that maps bounded sets in X into bounded subsets of Y. For arbitrary $0 \neq x \in X$, we denote

$$\bar{x} := \frac{x}{\|x\|_X},$$

then $\|\bar{x}\|_X \leq 1$, therefore $\bar{x} \in B_X(0,1)$. Since $T(B_X(0,1)) \subset Y$ is bounded, without loss of generality, we assume there exists a constant r > 0 such that $T(B_X(0,1)) \subset B_Y(0,r)$, therefore

$$||T(\bar{x})||_Y \le r,$$

by the linearity of T,

$$||T(x)||_Y \le r ||x||_X$$

which implies T is bounded.

 \Rightarrow :Let T be a linear bounded operator from X to Y. Then

$$||T(x)||_Y \le ||T|| \cdot ||x||_X, \quad \forall x \in X.$$

For arbitrary bounded set $U \subset X$, there exists R > 0 such that $U \subset B_X(0, R)$, then for arbitrary $x \in U$,

$$||T(x)||_Y \le R||T||_Y$$

which implies $T(U) \subset B_Y(0, R||T||)$ is a bounded set.

Problem 2. Prove that operators of the left and right shift on ℓ_p are bounded and $||T_l|| = ||T_r|| = 1$.

Proof. For the left shift operator T_l ,

$$||T_l(x)||_p^p = \sum_{i=1}^p |x(i+1)|^p \le \sum_{j=1}^p |x(j)|^p = ||x||_p^p, \quad \forall x \in \ell_p,$$

which implies $||T_l|| \leq 1$. Moreover, since for $x = e_2 = (0, 1, 0, \dots) \in \ell_p$,

$$T(e_2) = e_1 = (1, 0, \cdots),$$

therefore $||T(e_2)||_p = 1$, $||e_2||_p = 1$, which implies $||T_l|| = 1$. Similarly, we can prove $||T_r|| = 1$.

Problem 3. Let T be a bounded operator from a normed space X to a normed space Y. Prove that for every $x \in X$ and r > 0,

$$\sup_{y \in B(x,r)} \|Ty\| \ge \|T\|r.$$

Proof. Since

$$||T|| = \sup_{||y||=r} \frac{||Ty||}{r},$$

then

$$\|T\| \le \sup_{\|y\| \le r} \|Ty\|.$$

Note that by the triangle inequality,

$$2\|Ty\| \le \|Ty - Tx\| + \|Ty + Tx\|,$$

therefore

$$||Ty|| \le \max\{||Ty - Tx||, ||Ty + Tx||\},\$$

hence

$$r\|T\| \leq \sup_{\|y\| \leq r} \max\{\|Ty - Tx\|, \|Ty + Tx\|\} \leq \sup_{\|y - x\| \leq r} \|Ty\|.$$

 $Email \ address: \ \texttt{jhzhang@math.cuhk.edu.hk}$